DeepLearning.AI Deep Learning Specialization
-
Course 1: Neural Networks and Deep Learning
- Module 1: Introduction to Deep Learning
- Module 2: Neural Network Basics
- Module 3: Shallow Neural Networks
- Module 4: Deep Neural Networks
-
Course 2: Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
- Module 1: Practical Aspects of Deep Learning
- Module 2: Optimization Algorithms
- Module 3: Hyperparameter Tuning, Batch Normalization and Programming Frameworks
-
Course 3: Structuring Machine Learning Projects
- Module 1: ML Strategy
- Module 2: ML Strategy
-
Course 4: Convolutional Neural Networks
- Module 1: Foundations of Convolutional Neural Networks
- Module 2: Deep Convolutional Models: Case Studies
- Module 3: Object Detection
- Module 4: Special Applications: Face Recognition & Neural Style Transfer
-
Course 5: Sequence Models
- Module 1: Recurrent Neural Networks
- Module 2: Natural Language Processing & Word Embeddings
- Module 3: Sequence Models & Attention Mechanism
- Module 4: Transformer Network
DeepLearning.AI Tensorflow Developer Professional Certificate
-
Course 1: Introduction to Tensorflow for Artificial Intelligence, Machine Learning, and Deep Learning
- Module 1: A New Programming Paradigm
- Module 2: Introduction to Computer Vision
- Module 3: Enhancing Vision with Convolutional Neural Networks
- Module 4: Using Real-World Images
-
Course 2: Convolutional Neural Networks in Tensorflow
- Module 1: Exploring a Larger Dataset
- Module 2: Augmentation: A Technique to Avoid Overfitting
- Module 3: Transfer Learning
- Module 4: Multiclass Classifications
-
Course 3: Natural Language Processing in Tensorflow
- Module 1: Sentiment in Text
- Module 2: Word Embeddings
- Module 3: Sequence Models
- Module 4: Sequence Models and Literature
-
Course 4: Sequences, Time Series and Prediction
- Module 1: Sequences and Prediction
- Module 2: Deep Neural Networks for Time Series
- Module 3: Recurrent Neural Networks for Time Series
- Module 4: Real-World Time Series Data